[Reference] Physical and Mechanical Properties of Solder Alloys

8 posts / 0 new
Last post
clemence
clemence's picture
Offline
Last seen: 16 hours 51 min ago
Joined: 07/12/2015 - 02:58
Posts: 2354
Location: Bali - Indonesia
[Reference] Physical and Mechanical Properties of Solder Alloys
Physical and Mechanical Properties of Solder Alloys
 

 
Solder Alloy Melting Point, °C
solidus / liquidus
Density,
g/cm³
Electrical
Resistivity,
µΩ⋅m
Thermal
Conductivity,
W/m⋅K
Tensile
Strength
at Break,
kgf/cm²
Tensile
Elongation
at Break,
%
Brinell
Hardness,
HB
alloys of tin (Sn) with silver (Ag) and / or copper (Cu)
Sn96.5Ag3.5
(alloy #121)
221 / 221 7.37 0.123 55 580 35 15
Sn95Ag05
(alloy #132)
221 / 240 7.40 0.137 - 565 30 14
Sn90Ag10
(alloy #156)
221 / 295 7.51 - - - - -
Sn99.3Cu0.7
(alloy #244)
227 / 227 7.31 0.126 66 300 21 9
Sn97Cu03
(alloy #160)
227 / 300 7.32 0.118 - - - -
Sn99.2Ag0.1Cu0.7
(SAC0107)
217 / 228 7.32 - - - - -
Sn99Ag0.3Cu0.7
(alloy #263 or SAC0307)
217 / 228 7.33 - - 300 22 14
Sn98.5Ag0.8Cu0.7
(SAC0807)
216 / 225 7.33 0.140 - 310 21 16
Sn98.5Ag1.0Cu0.5
(alloy #258 or SAC105)
215 / 227 7.32 0.133 60 400 13 13
Sn97.1Ag2.6Cu0.3
(SAC263)
217 / 224 7.36 0.132 - - - -
Sn96.5Ag3.0Cu0.5a
(alloy #256 or SAC305)
217 / 220 7.38 0.132 58 500 19 15
Sn95.5Ag4.0Cu0.5
(alloy #246 or SAC405)
217 / 220 7.44 0.132 62 530 17 15
Sn95.5Ag3.8Cu0.7b
(alloy #241 or SAC387)
217 / 220 7.44 0.132 60 600 16 15
alloys of tin (Sn) and lead (Pb) with or without silver (Ag)
Sn90Pb10
(alloy #118)
183 / 213 7.55 - - 490 40 -
Sn63Pb37
(alloy #106)
183 / 183 8.40 0.145 50 525 37 17
Sn62.5Pb36.1Ag1.4
(alloy #104)
179 / 179 8.41 0.145 50 490 - 16
Sn60Pb40
(alloy #109)
183 / 191 8.50 0.153 49 535 40 16
Sn55Pb45
(alloy #113)
183 / 200 8.68 - - - - -
Sn50Pb50 or Pb50Sn50
(alloy #116)
183 / 212 8.87 0.158 48 420 35 14
Pb55Sn45 or Sn45Pb55
(alloy #125)
183 / 227 9.07 0.166 - - - -
Pb60Sn40 or Sn40Pb60
(alloy #130)
183 / 238 9.28 0.171 44 380 25 12
Pb65Sn35 or Sn35Pb65
(alloy #135)
183 / 247 9.50 0.176 - - - 12
Pb70Sn30 or Sn30Pb70
(alloy #141)
183 / 257 9.72 0.185 41 350 18 12
Pb75Sn25 or Sn25Pb75
(alloy #145)
183 / 268 9.96 0.194 - 240 53 11
Pb80Sn20 or Sn20Pb80
(alloy #149)
183 / 280 10.21 0.198 37 340 20 11
Pb85Sn15 or Sn15Pb85
(alloy #153)
183 / 288 10.70 - - 330 - 11
Pb88Sn10Ag02
(alloy #228)
267 / 290 10.75 0.203 27 230 42 -
Pb90Sn10 or Sn10Pb90
(alloy #159)
275 / 302 10.75 0.194 25 310 30 10
Pb92.5Sn05Ag2.5
(alloy #151)
287 / 296 11.02 0.200 - 295 - -
Pb95Sn05 or Sn05Pb95
(alloy #171)
308 / 312 11.06 0.196 23 280 45 8
Pb97.5Ag1.5Sn01
(alloy #165)
309 / 309 11.28 0.287 23 310 23 9
alloys of bismuth (Bi) and / or cadmium (Ca) with tin (Sb) and / or lead (Pb)
Bi58Sn42
(alloy #281)
138 / 138 8.56 0.383 19 565 55 23
Sn60Bi40
(alloy #281-338)
138 / 170 8.12 0.345 30 525 35 24
Bi55.5Pb44.5
(alloy #255)
124 / 124 10.44 0.431 4 450 38 15
Sn43Pb43Bi14
(alloy #97)
144 / 163 9.02 - - 450 41 -
Sn51.2Pb30.6Cd18.2
(alloy #181)
145 / 145 8.45 - 35 440 - -
alloys of indium (In) with lead (Pb) and / or tin (Sn) and / or silver (Ag)
In70Pb30
(alloy #204)
165 / 175 8.19 0.196 38 245 - -
In60Pb40
(alloy #205)
173 / 181 8.52 0.246 29 290 - -
In50Pb50 or Pb50In50
(alloy #7)
184 / 210 8.86 0.287 22 330 55 10
Pb60In40
(alloy #206)
197 / 231 9.30 0.332 19 350 - -
Pb75In25
(alloy #10)
240 / 260 9.97 0.375 18 385 48 10
Pb81In19
(alloy #150)
260 / 275 10.27 0.383 17 390 - -
Pb95In05
(alloy #11)
300 / 313 11.06 0.338 21 305 52 6
In52Sn48
(alloy #1E)
118 / 118 7.30 0.147 34 120 83 5
In50Sn50 or Sn50In50
(alloy #1)
118 / 125 7.30 0.147 34 120 83 5
In97Ag03
(alloy #290)
143 / 143 7.38 0.075 73 55 - 2
In90Ag10
(alloy #3)
143 / 237 7.54 0.078 67 115 61 3
In80Pb15Ag05
(alloy #2)
149 / 154 7.85 0.133 43 180 58 5
Pb90In05Ag05
(alloy #12)
290 / 310 11.00 0.308 25 405 23 9
Pb92.5In05Ag2.5
(alloy #164)
300 / 310 11.02 0.313 25 320 - -
Sn77.2In20Ag2.8
(alloy #227)
175 / 187 7.25 0.176 54 480 47 17
Sn37.5Pb37.5In25
(alloy #5)
134 / 181 8.42 0.221 23 370 101 10
Sn54Pb26In20
(alloy #230)
136 / 152 8.05 - - - - -
Sn70Pb18In12
(alloy #9)
154 / 167 7.79 0.141 45 375 136 12
low temperature alloys
In51.0Bi32.5Sn16.5
(alloy #19 or Field's alloy)
60 / 60 7.88 0.522 - 340 - 11
Bi50Pb26.7Sn13.3Cd10
(alloy #158 or Wood's alloy)
70 / 70 9.58 0.431 18 420 120 15
Bi52Pb30Sn18
(alloy #39 or Newton's alloy)
96 / 96 9.60 0.750 13 365 100 16
Bi50Pb28Sn22
(alloy #41 or Rose's alloy)
100 / 100 9.44 - - - - -
other alloys
Sn95Sb05
(alloy #133)
235 / 240 7.25 0.145 28 415 38 13
Sn91Zn09
(alloy #201)
199 / 199 7.27 0.115 61 560 33 22
Au80Sn20
(alloy #182 or Orotin)
280 / 280 14.51 - 57 2800 2 -
Au88Ge12
(alloy #183 or Georo)
356 / 356 14.67 - - 2150 1 -
Pb97.5Ag2.5
(alloy #161)
303 / 303 11.33 0.200 - 310 42 -
Pb94.5Ag5.5
(alloy #229)
304 / 365 11.35 0.287 23 310 - -
Pb85Sb10Sn05
(alloy #233)
245 / 255 10.36 0.287 - 390 4 -

In100
(pure indium)
157 / 157 7.31 0.0837 86 20 - 1
Sn100
(pure tin)
232 / 232 7.29 0.124 73 135 - 4
Bi100
(pure bismuth)
271 / 271 9.78 1.29 8 - - 7
Pb100
(pure lead)
327 / 327 11.34 0.218 35 125 55 4
Ag100
(pure silver)
960 / 960 10.49 0.0163 429 1480 50 25
Au100
(pure gold)
1064 / 1064 19.30 0.0221 318 1405 42 25
Cu100
(pure copper)
1085 / 1085 8.94 0.0172 401 2460 40 35
 
a) U.S. patent #5527628 issued on the 18-June-1996 to SMIC (Senju Metal Industry Co.), will expire internationally on the 24-Feb-2015; 
b) U.S. patent #4929423 issued on the 29-May-1990 to Cookson Group, expired internationally on the 31-Mar-2009;
 
NOTES:
1. Electrical resistivity and thermal conductivity are evaluated usually at 20°C and 85°C respectively.
2. Electrical resistivity is inverse to electrical conductivity.
3. Electrical conductivity is often expressed in % IACS which stands for International Annealed Copper Standard.
100% IACS is electrical conductivity of annealed copper which equals to 58.0 × 106 S⋅m-1.
4. Tensile strength in kgf/cm² may be converted to psi (pounds per square inch) by multiplying with 14.22.
Edited by: clemence on 12/24/2016 - 01:17
MILSPEC
Offline
Last seen: 2 months 4 weeks ago
Joined: 10/12/2016 - 06:02
Posts: 551

very useful, thank you!

Lexel
Lexel's picture
Offline
Last seen: 8 hours 14 min ago
Joined: 11/01/2016 - 08:00
Posts: 5527
Location: Germany

Can you send me a 250g sample of the AU88GE12 Cash

clemence
clemence's picture
Offline
Last seen: 16 hours 51 min ago
Joined: 07/12/2015 - 02:58
Posts: 2354
Location: Bali - Indonesia
Lexel wrote:
Can you send me a 250g sample of the AU88GE12 Cash

LOL, actually I’m wondering what’s its real world uses.

Bort
Bort's picture
Offline
Last seen: 1 month 3 weeks ago
Joined: 06/01/2012 - 17:15
Posts: 7455
Location: Holding the proverbial flashlight

So to maximize thermal conductivity for overdriving emitters one should use pure Indium or Tin?
I suspect using pure Silver, Copper or Gold will fry the emitter

The Journal of Alternative Facts TM

"It is critical that there is a credible academic source for the growing and important discipline of alternative facts. This field of study will just keep winning, and we knew that all the best people would want to be on board. There is a real risk in the world today that people might be getting their information about science from actual scientists"

 

clemence
clemence's picture
Offline
Last seen: 16 hours 51 min ago
Joined: 07/12/2015 - 02:58
Posts: 2354
Location: Bali - Indonesia
Bort wrote:
So to maximize thermal conductivity for overdriving emitters one should use pure Indium or Tin? I suspect using pure Silver, Copper or Gold will fry the emitter

The question will be: is it worth the money spend/lumen gain?
Depends on intended applications. Pure Indium fluxless wire price is very expensive USD 95/3 ft.

Bort
Bort's picture
Offline
Last seen: 1 month 3 weeks ago
Joined: 06/01/2012 - 17:15
Posts: 7455
Location: Holding the proverbial flashlight
clemence wrote:
Bort wrote:
So to maximize thermal conductivity for overdriving emitters one should use pure Indium or Tin? I suspect using pure Silver, Copper or Gold will fry the emitter

The question will be: is it worth the money spend/lumen gain?
Depends on intended applications. Pure Indium fluxless wire price is very expensive USD 95/3 ft.


I do not know on either count, but pure Tin may be a decent compromise

The Journal of Alternative Facts TM

"It is critical that there is a credible academic source for the growing and important discipline of alternative facts. This field of study will just keep winning, and we knew that all the best people would want to be on board. There is a real risk in the world today that people might be getting their information about science from actual scientists"

 

clemence
clemence's picture
Offline
Last seen: 16 hours 51 min ago
Joined: 07/12/2015 - 02:58
Posts: 2354
Location: Bali - Indonesia
Bort wrote:
clemence wrote:
Bort wrote:
So to maximize thermal conductivity for overdriving emitters one should use pure Indium or Tin? I suspect using pure Silver, Copper or Gold will fry the emitter

The question will be: is it worth the money spend/lumen gain?
Depends on intended applications. Pure Indium fluxless wire price is very expensive USD 95/3 ft.


I do not know on either count, but pure Tin may be a decent compromise

Pure Indium is very good as a thermo safety switch off Big Smile . You overdrive the LED and beyond 157C it fell off the MCPCB LOL
Good only for low temp application. Any metals usually annealed far below their melting point. For example, SAC305 (Sn96,5Ag3Cu0,5) starts to anneal at 125C. TIM made from pure Indium also exhibit extremely soft physical characteristic, too soft for solder application hence the additives.

Pure Tin while has much higher melting point at 232C is not much harder than Indium. You can slice it with razor easily.

I often use the BiSn solder for super low temp soldering. Don’t really know the composition. It melts slightly below the PVC melting temp, used as convenient waterproof wire joiner.