-----excerpt follows----
“Venting of isolated small cells (cellphone cells and smaller) seldom results in flame ignition. This is likely due to the limited volumes of vent gases released from these cells–that is, the gases become diluted before ignition can occur. In comparison, ignition of vent gases from 18650 and larger cells [used in some laptops] is fairly common: these cells contain more electrolyte (more fuel), and are usually used in multi-cell battery packs. If the flow of vent gases is ‘restricted’ due to the configuration of a vent port (typical in hard case cells), flames emanating from the cell will be highly directional (flames from 18650 cells are often described as ‘torch-like’).
“Propagation of cell thermal runaway has significant implications for fire suppression and fire protection. A fire suppressant or low-oxygen environment may extinguish flames from a battery pack, but the thermal runaway reaction will propagate if heat is not sufficiently removed from the adjacent cells. Responders to fires involving lithium-ion battery packs have often described a series of re-ignition events. Typically, responders report they used a fire extinguisher on a battery pack fire, thought they had extinguished the fire, and then observed the fire re-ignite as an additional cell vented.”
...
"... the FAA is not considering the many laptops with magnesium frames flying on long overwater or remote routes without any protection other than Halon and water. “If magnesium catches fire, it will keep burning,” he warned. Steenholdt recommends keeping laptops carried in cabins in containment bags as a precaution, especially on Etops trips. An in-flight fire stemming from lithium laptop batteries is inevitable, he believes, and when a tragedy happens, “the FAA will finally react.”
In considering the hazards of lithium batteries, one message comes through loud and clear: you’ll be much happier when you carry some kind of bag to isolate and contain a lithium-battery-powered device that spontaneously overheats or bursts into flame. While spontaneous combustion of lithium battery-powered devices doesn’t seem to happen that often, a fire-containment bag will help keep the fire from spreading into an all-out disaster."
----end excerpt-----
I own in a fire-safety bag.
Note that's "safety" not "safe" -- they can still vent gas that's burning; they'd add one level of safety.
Most of them seem to be sold by hobby shops and labeled for "lithium-polymer" fire safety.
-----
Also found:
"... Under different conditions of pressure, temperature and electric field, the active chemicals in a cell may break down or combine in many different ways. According to Guoxian Liang, of the materials company Phostech Lithium, the following combinations of the elements used in the cathodes of Lithium Iron Phosphate cells have been found in some impure products in addition to the desired active compound LiFePO4:
Fe3(PO4)2, Li3Fe2(PO4)3, Fe2PO5, Fe2P2O7, FePO4, Fe(PO3)3, Fe7(PO4)6, Fe2P4O12, Fe3(PO4)2, Fe3(P2O7)2, FePLi2O, LiPO3, Li2O, Li3PO4, Li4P2O7, Fe2O3, Fe3O4, FeO, Fe, FeP, LiFeO2, Li5FeO4, LiFeP2O7, Li2FeP2O7, Li9Fe3(P2O7)3(PO4)2, P2O5, and others. These compounds arise just from the cathode material, but there are many other elements present in the anodes, electrolytes, binders and other additives which are used in the cell, making many more combinations possible"