ImA4wheelr, If there there is a need I could start a spreadsheet. I dont think it will be necessary though. Might also be higher chance that people report more data if its kept simple. That way people can post what they know. At the end of the day, I don't think there are too many people who have that much data when it comes to these things. Especially not beyond the capabilities of direct drive. Im not going to encourage people to push their emitters as far as Im often willing to test. I like to know that I got some headroom. When that is said. 5A seems to be a nice place to measure Vf.
[quote=rjorge]
Just measured a XM-L2 U3 1A and 2A. 3A: 1A, 3.34v. 2A, 3.64v 4A: 1A, 3.50v. 2A, 3.85v 5A: 1A, 3.68v. 2A, 4.10v Both on 20mm Noctogons, 18 gauge wires, sinked to a 4x4x5 chunk of Aluminum. Power supply: Kenwood PD18-20D.
[/quote]
WOW. Looks like you won the U3 1A lottery.
That looks like a U3 binned emitter that could potentially handle 7A+ (not saying you should try it). Are you able to do a light output comparison between the two emitters at similar amps (3,4,5A) ? That would be very interesting. Any more info? Vendor? Date ordered? :D
@18sixfify. Keep is updated on your adventures. :)
[quote=bibihang]
Thank you very much for such useful information RaceR86. :beer: IMO measuring the actual lumens output is necessary to find out if CREE has changed these emitters for good or bad. Although the acceptable peak current of these emitters have reduced but on the other hand the Vf has increased, this could mean that the total power the emitter see can still be about the same? For example the emitter in your video died at 5.70A but the Vf at that moment was 4.04V, that is still a whopping 23W already.
[/quote]
:beer:
I agree. More output data would help. There are limits to how much time I can put into testing. I was mainly trying to achieve 6,6A with the best possible emitters. Hopefully others will share what data they have as well. I find it strange that the U2s Ive tested either die around 5,6A, or they are good for much more. So far I have not seen anything in between.
Yes, the U2 died at 23W (5,7A). Its a lot of energy for a 10W emitter, but at the same time, its not that high for an emitter on copper. In comparison the U3 1A I tested died at 27,33W (6,4A). And the "China T6" emitter was still going strong at 30,2W (7,6A). I would not be surprised if that emitter could be pushed beyond 33W. 10W more compared to a bad U2 emitter.
Needless to say, Id like to get my hands on well performing top binned emitters that are capable of 25W+.
Id pay extra to get emitters that was verified to do high amps for the most hardcore builds. Right now it seems to me that emitter performance can be a lottery.
No doubt that everything beyond 3A is at our responsibility. But its its CREE`s responsibility to produce emitters that are within spec. (Although I dont know what tolerances they have. Anyone knows? Look at the differences in the emitters rjorge posted.
One U3 emitter had a Vf of 3,34V. Which is where they ideally should be. Problem is when another similar binned emitter have Vf of 3,64V then something is off. That is a massive difference. They should be at 3,33V. Yes, our copper mcpcb`s can make that a bit higher, but 3,64V...
If its not something Cree have done then I wonder if there could be something wrong with the re-flow process. Maybe I should stick to only buying bare emitters. I dont know...